Two New Triterpene Saponins from Acanthophyllum laxiusculum

by David Pertuit^a), Tayebe Baghery Lotfabad^b), Anne-Claire Mitaine-Offer^a), Tomofumi Miyamoto^c), Chiaki Tanaka^c), and Marie-Aleth Lacaille-Dubois*^a)

a) EA 4267, FDE/UFC Laboratoire de Pharmacognosie, UFR Pharmacie, Université de Bourgogne, 7, Bd Jeanne d'Arc, BP 87900, FR-21079 Dijon Cedex

(phone: +33-3-80393229; fax: +33-3-80393300; e-mail: m-a.lacaille-dubois@u-bourgogne.fr)

b) National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, km 15,

Tehran-Karaj Highway, Tehran, Iran

c) Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan

Two new triterpene glycosides, **1** and **2**, together with three known ones, were isolated from roots of *Acanthophyllum laxiusculum* Schiman-Czeika. The structures of the new compounds were established by extensive 1D- and 2D-NMR spectroscopic experiments and MS analyses as $23-O-\beta-D$ -galactopyranosylgypsogenic acid $28-O-\{\beta-D$ -glucopyranosyl- $(1 \rightarrow 2)-6-O-[4-carboxy-3-hydroxy-3-methyl-1-oxobutyl]-\beta-D-glucopyranosyl-<math>(1 \rightarrow 6)$ - $[\beta-D$ -glucopyranosyl- $(1 \rightarrow 2)-6-O-[4-carboxy-3-hydroxy-3-methyl-1-oxobutyl]-\beta-D-glucopyranosyl-<math>(1 \rightarrow 6)$ - $[\beta-D$ -glucopyranosyl- $(1 \rightarrow 3)$ - $[\beta-D$ -galactopyranosyl- $(1 \rightarrow 6)$ - $[\beta-D$ -glucopyranosyl- $(1 \rightarrow 3)$ - $[\beta-D$ -galactopyranosyl- $(1 \rightarrow 6)$ - $[\beta-D$ -glucopyranosyl- $(1 \rightarrow 3)$ - $[\beta-D$ -galactopyranosyl- $(1 \rightarrow 6)$ - $[\beta-D$ -glucopyranosyl- $(1 \rightarrow 3)$ - $[\beta-D$ -galactopyranosyl- $(1 \rightarrow 6)$ - $[\beta-D$ -glucopyranosyl- $(1 \rightarrow 3)$ - $[\beta-D$ -galactopyranosyl- $(1 \rightarrow 6)$ - $[\beta-D$ -galactopyranosyl- $[\beta-D$ -galactopyranosyl-

Introduction. – In a continuation of our studies on saponins from the plants of the Caryophyllaceae family [1-6], we have examined the saponins from the roots of *Acanthophyllum laxiusculum* Schiman-Czeika (syn.: *Acanthophyllum heratense* Schiman-Czeika). *Acanthophyllum* C.A.Mey is a genus with *ca.* 61 herbaceous species worldwide, of which 33 occur in Iran, with 23 being endemic [7]. Traditionally, all species of *Acanthophyllum* are used as soup in Khorasan Province, and the aqueous extract of their roots is used to make a special type of candy [5]. No previous phytochemical study has been reported on saponins of *A. laxiusculum*. Herein, we report the isolation and structure elucidation of two new triterpene saponins, 1 and 2 (*Fig.*), and the identification of three known ones, 3-5 (*Fig.*), from the H_2O extract of the roots of this plant.

Results and Discussion. – The H₂O extract of roots of *A. laxiusculum* was fractionated by vacuum liquid chromatography (VLC) and purified by repeated medium-pressure liquid chromatography (MPLC) on normal or reversed-phase (RP) silica gel to yield **1** and **2** (*Fig.*), and three known compounds. Their structures were elucidated by extensive NMR spectroscopy, including a series of 2D-NMR experiments (¹H, ¹H-COSY, TOCSY, NOESY, HSQC, and HMBC), and by mass spectrometry. The known saponins were identified by comparison of their spectral data with those reported in the literature as glanduloside C (**4**) from *Acanthophyllum glandulosum*, *Acanthophyllum sordidum*, *Acanthophyllum lilacinum*, and *Acanthophyllum elatius* [3][6], its prosapogenin, **3**, from *Gypsophila oldhamania* [8], and 3-O-

Figure. Structures of 1-5

 β -D-galactopyranosyl- $(1 \rightarrow 2)$ -[β -D-xylopyranosyl- $(1 \rightarrow 3)$]- β -D-glucuronopyranosyl-gypsogenin 28-O- β -D-xylopyranosyl- $(1 \rightarrow 3)$ - β -D-xylopyranosyl- $(1 \rightarrow 4)$ - α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -[(4-O-acetyl)- β -D-quinovopyranosyl- $(1 \rightarrow 4)$]- β -D-fucopyranosylester (= O- β -D-xylopyranosyl- $(1 \rightarrow 3)$ -O- β -D-xylopyranosyl- $(1 \rightarrow 4)$ -O-6-deoxy- α -L-mannopyranosyl- $(1 \rightarrow 2)$ -O-4-O-acetyl-6-deoxy- β -D-glucopyranosyl- $(1 \rightarrow 4)$ -6-deoxy-1-O-[(3 β)-3-[[O- β -D-galactopyranosyl- $(1 \rightarrow 2)$ -O-[β -D-xylopyranosyl- $(1 \rightarrow 3)$]- β -D-glucopyranuronosyl]oxy]-23,28-dioxoolean-12-en-28-yl]- β -D-galactopyranose; 5) from *Gypsophila bicolor* [4].

Compounds ${\bf 1}$ and ${\bf 2}$ were isolated as white amorphous powder. The monosaccharides obtained by acid hydrolysis of each compound were identified as galactose and

glucose for **1** and **2** by TLC comparison with authentic samples. The absolute configurations were determined as D for all sugars (see the *Exper. Part*) by GC analysis [9].

The HR-ESI mass spectrum of 1 exhibited a quasi-molecular-ion peak at m/z1463.6311 ($[M + Na]^+$) consistent with the molecular formula $C_{66}H_{104}O_{34}$. The positiveion-mode ESI-MS of 1 exhibited two quasi-molecular-ion peaks at m/z 1479 ([M+ K]⁺) and 1463 ([M + Na]⁺). The HSQC spectrum of the aglycone exhibited six Me signals at $\delta(H)/\delta(C)$ 1.46 (s)/11.5 (C(24)), 0.82 (s)/15.7 (C(25)), 0.92 (s)/17.0 (C(26)), 1.03 (s)/25.6 (C(27)), 0.76 (s)/32.7 (C(29)), and 0.82 (s)/23.3 (C(30)), one olefinic CHsignal at 5.32 (s)/123.1 (C(12)), and a C_q signal at 143.8 (C(13); Table 1). These data were indicative of an olean-12-ene-type aglycone [2][6]. The HMBC cross-peaks between $\delta(H)$ 1.46 (Me(24)), and $\delta(C)$ 74.8 (C(3)), 54.7 (C(4)), 51.6 (C(5)), and 177.5 (C(23)) indicated that one secondary OH and one ester group were located at C(3) and C(23), respectively. Another upfield-shifted carboxylate C-atom signal at δ (C) 176.3 (C(28)) evidenced that 1 was a bidesmosidic saponin with two glycosyl ester linkages at C(23) and C(28). An extensive analysis of 1D- and 2D-NMR spectroscopic data indicated that the aglycone of **1** was gypsogenic acid (= (3β) -3-hydroxyolean-12-ene-23,28-dioic acid), and they were in good agreement with those in [2] and [6]. The ¹H-NMR spectrum of **1** exhibited signals of five anomeric H-atoms at δ (H) 6.25 (d, J = 7.8), 6.06 (d, J=7.3), 5.26 (d, J=7.6), 4.88 (d, J=7.6), and 5.23 (d, J=7.8), which correlated in the HSQC spectrum with signals of five anomeric C-atoms at $\delta(C)$ 95.9, 94.9, 104.7, 102.4, and 104.5, respectively, indicating the presence of five sugar units. Complete assignments of each sugar were achieved by extensive 1D- and 2D-NMR analyses, allowing the identification of two β -galactopyranosyl (Gal1 and Gal2) and three β -glucopyranosyl (Glc1 – Glc3) units, respectively. The HMBC cross-peak 6.25 (H–C(1) of Gal1)/177.5 (C(23) of the aglycone unit (Agly)) established that the Gal1 unit was linked to C(23) of Agly. The HMBC cross-peaks at $\delta(H)/\delta(C)$ 6.06 (H–C(1) of Gal2)/176.3 (C(28) of Agly); 5.26 (H–C(1) of Glc1)/86.9 (C(3) of Gal2); 4.88 (H–C(1) of Glc2)/69.1 (C(6) of Gal2); and 5.23 (H-C(1) of Glc3)/82.0 (C(2) of Glc2) indicated that the oligosaccharide sequence Glc3- $(1 \rightarrow 2)$ -Glc2- $(1 \rightarrow 6)$ -[Glc1- $(1 \rightarrow 3)$]-Gal2 was linked to C(28) of Agly. These linkages were also confirmed by the following NOESY cross-peaks: $\delta(H)$ 5.26 (H–C(1) of Glc1)/ $\delta(H)$ 4.25 (H–C(3) of Gal2); 4.88 (H–C(1) of Glc2)/4.25 (CH₂(6) of Gal2); and 5.23 (H–C(1) of Glc3)/4.05 (H–C(2) of Glc2). Furthermore, the deshielded signals of $CH_2(6)$ of Glc2 at $\delta(H)$ 4.48, 4.82/ $\delta(C)$ 63.9 indicated an acylation in this position. The presence of a dicrotalic acid moiety (= 3hydroxy-3-methylpentanedioic acid) was ascertained by the observation of a set of additional signals in the 1D- and 2D-NMR spectra corresponding to a 4-carboxy-3hydroxy-3-methyl-1-oxobutyl moiety (see Table 2), which were in good agreement with those reported in [10-12]. The linkage of this unit to $CH_2(6)$ of Glc2 was confirmed by the HMBC $\delta(H)$ 4.48/ $\delta(C)$ 170.8. Thus, **1** was elucidated as 23-O- β -D-galactopyranosylgypsogenic acid 28-O-{ β -D-glucopyranosyl-(1 \rightarrow 2)-6-O-[4-carboxy-3-hydroxy-3-methyl-1-oxobutyl]- β -D-glucopyranosyl- $(1 \rightarrow 6)$ }- $[\beta$ -D-glucopyranosyl- $(1 \rightarrow 3)$]- β -Dgalactopyranosyl ester.

The positive-ion-mode HR-ESI-MS of **2** exhibited a *quasi*-molecular-ion peak at m/z 1301.5774 ($[M+Na]^+$) consistent with the molecular formula $C_{60}H_{94}O_{29}$. The positive-ion-mode ESI-MS of **2** exhibited a *quasi*-molecular-ion peak at m/z 1301

Table 1. 1H - and ^{13}C -NMR Data (600 and 150 MHz, resp.; in C_5D_5N) of the Aglycone of 1 and 2 from 1D- and 2D-NMR Experiments^a). δ in ppm, J in Hz.

Position	1		2	
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
1	0.96, 1.46	38.6	1.01, 1.47	38.7
2	1.81, -b	26.8	1.81, -b)	26.9
3	4.53 (dd, J = 8.1, 6.9)	74.8	4.50	75.3
4		54.7		53.9
5	1.76	51.6	1.88	51.3
6	1.80, 1.86	22.9	1.83, 1.88	23.6
7	1.64, 1.76	32.1	1.66, 1.76	32.0
8		39.7		39.9
9	1.60	47.9	1.68-1.72 (m)	47.6
10		36.4		36.5
11	1.80, 1.88	23.5	1.81, 1.90	23.4
12	5.32 (br. s)	123.1	5.35 (br. s)	123.1
13		143.8		144.0
14		41.6		41.8
15	0.99, 2.04	27.8	1.06, 2.08 - 2.12 (m)	27.9
16	1.43, 1.55	21.2	1.50, 1.55	21.4
17		46.7		46.8
18	3.05 (br. $d, J = 12.1$)	41.3	3.07 (br. $d, J = 12.0$)	41.3
19	1.08-1.14 (m), 1.59	45.9	1.12, 1.62	46.0
20		30.6		30.4
21	1.04, 1.22	33.7	1.08, 1.22	33.6
22	1.20, 1.50	32.4	1.23, 1.52 - 1.58 (m)	32.2
23		177.5		183.0
24	1.46(s)	11.5	1.47(s)	12.5
25	0.82(s)	15.7	0.86(s)	15.8
26	0.92(s)	17.0	0.98(s)	17.2
27	1.03(s)	25.6	1.12 (s)	25.8
28		176.3		176.4
29	0.76(s)	32.7	0.77(s)	32.8
30	0.82(s)	23.3	0.82(s)	23.4

^a) Overlapped signals are reported without designated multiplicity. ^b) Not determined.

($[M+\mathrm{Na}]^+$), 162 mass units lower than that for **1**. The $^1\mathrm{H-}$ and $^{13}\mathrm{C-}\mathrm{NMR}$ assignments of **2** ($Tables\ 1$ and 2) accomplished by extensive 2D-NMR analyses were almost superimposable to those of **1** except for the disappearance of the signals of a terminal galactopyranosyl moiety. The characteristic upfield $^{13}\mathrm{C-}\mathrm{NMR}$ signal of an carboxylate C-atom in **1** at $\delta(\mathrm{C})$ 177.5 (C(23)) was replaced by a signal at 183.0 in **2**, indicative of a COOH group. This was confirmed by the HMBCs between $\delta(\mathrm{H})$ 1.47 (s, Me(24)), and $\delta(\mathrm{C})$ 183.0 (C(23)), 75.3 (C(3)), and 53.9 (C(4)). Thus, the structure of **2** was elucidated as gypsogenic acid 28-O-{ β -D-glucopyranosyl-(1 \rightarrow 2)-6-O-[4-carboxy-3-hydroxy-3-methyl-1-oxobutyl]- β -D-glucopyranosyl-(1 \rightarrow 6)}-[β -D-glucopyranosyl-(1 \rightarrow 3)]- β -D-galactopyranosyl ester.

A literature survey revealed that the sequence 23-O-Gal-gypsogenic acid 28-O-Gal with a terminal Gal moiety at C(23), and additional substitutions at C(3) and C(6) of

Table 2. 1H - and ^{13}C -NMR Data (600 and 150 MHz, resp.; in C_5D_5N) of the Sugar Moieties of ${\bf 1}$ and ${\bf 2}$ from 1D- and 2D-NMR Experiments^a). δ in ppm, J in Hz.

Position	1		2	
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(H)$	$\delta(C)$
23-O-Sugar				
Gal1				
1	6.25 (d, J = 7.8)	95.9		
2	4.10	73.5		
3	4.20	77.9		
4	4.14	70.6		
5	3.93	78.7		
6	4.17, 4.32	61.6		
28-O-Sugars				
Gal2				
1	6.06 (d, J = 7.3)	94.9	6.06 (d, J = 7.3)	94.3
2	4.22	72.5	4.22	72.6
3	4.25	86.9	4.23	87.1
4	4.23	68.5	4.24	68.5
5	4.02	76.9	4.04	76.9
6	4.25, 4.43	69.1	4.25, 4.46	69.4
Glc1	т.23, т.т3	07.1	7.23, 7.70	07.7
1	5.26 (d, J = 7.6)	104.7	5.23	104.8
2	4.02	75.4	4.03	75.3
3	4.02	77.5	4.09	77.3
4	3.96	71.3		70.9
			3.95 (dd, J = 8.8, 8.0)	
5	$3.85 - 3.90 \ (m)$	77.9	3.84 – 3.88 (<i>m</i>)	77.8
6 Glc2	4.10, 4.42	62.0	4.24, 4.40	61.9
1	4.88 (d, J = 7.6)	102.4	4.89	102.5
2	4.05	82.0	4.08	82.0
3	4.16	77.4	$4.14 - 4.18 \ (m)$	77.3
4	3.93	70.8	3.96 (dd, J = 8.8, 8.0)	70.7
5	3.78-3.82 (<i>m</i>)	74.9	3.81-3.84 (m)	74.9
6	. ,	63.9	` /	64.0
0	4.48 (dd, J = 10.7, 4.0), 4.82 (br. d, J = 10.4)	03.9	4.48, 4.89	04.0
Glc3	4.82 (bi. $u, J = 10.4$)			
1	5.23 (d, J = 7.8)	104.5	5.24	104.8
2	4.03	75.3	4.02	74.9
3	4.09	77.5	4.09	77.3
4	4.05	70.5	4.09	70.9
5	3.81 – 3.84 (<i>m</i>)	77.8	3.84 – 3.88 (<i>m</i>)	77.8
6	4.23, 4.42	62.0	4.10, 4.42	61.9
Acid at C(6) of Glc2	· · · · ·		•	
1		170.8		171.1
2	2.80-2.86 (<i>m</i> , 2 H)	46.9	2.82-2.89 (<i>m</i> , 2 H)	47.0
3	2.00-2.00 (m, 2 11)	70.0	2.02 = 2.07 (III, 2 11)	69.9
4	270 (4 1-152) 200 (4 1-150)		272 (4 1- 154) 200	69.9 47.6
	2.70 (d, J = 15.2), 2.90 (d, J = 15.0)	47.7	2.72 (d, J = 15.4), 2.90	
5	1.40 (-)	179.8	1 51 (-)	179.2
6	1.49 (s)	27.8	1.51 (s)	28.0

^a) Overlapped signals are reported without multiplicity.

Gal at C(28) in 1 occurs in several saponins isolated only from *Acanthophyllum* species of Caryophyllaceae, such as *A. glandulosum*, *A. sordidum*, and *A. lilacinum* [3][6]. These conclusions suggested that this sequence might represent a chemotaxonomic marker for the genus *Acanthophyllum*.

Experimental Part

General. TLC and HP-TLC: silica gel 60 F_{254} (SiO₂; Merck); identification of saponins with 1% vanillin in EtOH/H₂SO₄ 50:1. VLC/MPLC: SiO₂ 60 (15–40 μm; Merck), RP-18 (75–200 μm; SiliCycle). MPLC: Alltech pump, Büchi column (460 × 15 mm and 230 × 15 mm), Büchi precolumn (110 × 15 mm). GC: ThermoQuest gas chromatograph, DB-1701 cap. column (30 m × 0.25 mm i.d; J&W Scientific); detector, FID; detector temp., 250°; injection temp., 230°; initial temp., 80° for 5 min and then increased to 270° at a rate of 15°/min; carrier gas, He [12]. Optical rotations: AA-OR automatic polarimeter. ¹H-and ¹³C-NMR spectra: Varian Unity-600 and Inova-600 instruments equipped with a Sun-4-L-X computer system (at 600 and 150 MHz, resp.); for details see [1]; δ in ppm rel. to Me₄Si as internal standard, J in Hz. ESI-MS (pos.): MicrOTOF spectrometer; in m/z. HR-ESI-MS (pos.): Q-TOF-1 Micromass spectrometer; in m/z.

Plant Material. The roots of A. laxiusculum Schiman-Czeika were collected from Torbat-e Heydarieh, Khorasan Province, Iran, in July 2012, and identified by Dr. Atefeh Pirani, plant taxonomist at the Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, where a voucher specimen (No. 09092013) was deposited.

Extraction and Isolation. Air-dried powdered roots of A. laxiusculum (30 g) were extracted with H_2O (3 × 500 ml) for 6 h under reflux to yield 8.5 g of a crude H_2O extract after evaporation. An aliquot of this extract (1.96 g) was submitted to VLC (SiO₂ 60; CHCl₃/MeOH/H₂O 60:32:7 and 0:100:0 (300 ml each)) to give six fractions, Frs. 1–6. Fr. 2 (186 mg; eluted with CHCl₃/MeOH/H₂O 60:32:7) was separated by MPLC (SiO₂ 60; CHCl₃/MeOH/H₂O 60:32:7) to give 15 subfractions, Frs. 2.1–2.15 (Fr. 2.14: **2** (7 mg) and Fr. 2.9: **5** (12 mg)). Furthermore, Fr. 4 (350 mg) was subjected to VLC (RP-18; MeOH/H₂O 0:100 \rightarrow 100:0) to give six subfractions, Frs. 4.1–4.6. Frs. 4.4 and 4.5 were combined (210 mg) and separated by MPLC (SiO₂ 60; CHCl₃/MeOH/H₂O 60:32:7) to give ten subfractions, Frs. 4.4.1–4.4.10. Fr. 4.4.6 was purified by MPLC (RP-18; MeOH/H₂O 30:70 \rightarrow 80:20) to give **3** (7 mg) and **4** (9 mg).

23-O-β-D-Galactopyranosylgypsogenic Acid 28-O-{β-D-Glucopyranosyl-(1 \rightarrow 2)-6-O-{4-carboxy-3-hydroxy-3-methyl-1-oxobutyl]-β-D-glucopyranosyl-(1 \rightarrow 3)]-β-D-galactopyranosyl Ester (= O-β-D-Glucopyranosyl-(1 \rightarrow 3)-O-[O-β-D-glucopyranosyl-(1 \rightarrow 2)-6-O-(4-carboxy-3-hydroxy-3-methyl-1-oxobutyl)-β-D-galactopyranosyl-(1 \rightarrow 6)]-1-O-[(3β)-23-(β-D-galactopyranosyloxy)-3-hydroxy-23,28-dioxoolean-12-en-28-yl]-β-D-galactopyranose; 1). White amorphous powder. [a] $_{0}^{D}$ 5 = -10.2 (c=0.09, MeOH). $_{0}^{1}$ H- and $_{0}^{1}$ C-NMR: Tables 1 and 2. ESI-MS (pos.): 1479 ([M+K] $_{0}^{+}$), 1463 ([M+Na] $_{0}^{+}$). HR-ESI-MS (pos.): 1463.6311 ([M+Na] $_{0}^{+}$, C_{6} 6H₁₀₄NaO $_{34}$; calc. 1463.6301).

Gypsogenic Acid 28-O-{ β -D-Glucopyranosyl-(1 \rightarrow 2)-6-O-[A-carboxy-3-hydroxy-3-methyl-1-oxobutyl]- β -D-glucopyranosyl-(1 \rightarrow 6)}-[β -D-glucopyranosyl-(1 \rightarrow 3)]- β -D-galactopyranosyl Ester (=O- β -D-Glucopyranosyl-(1 \rightarrow 3)-O-{O- β -D-glucopyranosyl-(1 \rightarrow 2)-6-O-(A-carboxy-3-hydroxy-3-methyl-1-oxobutyl)- β -D-glucopyranosyl-(1 \rightarrow 6)]-1-O-[(3 β)-3,23-dihydroxy-23,28-dioxoolean-12-en-28-yl]- β -D-galactopyranose; 2). White amorphous powder. [α] $_D^{55}$ = -16.8 (c = 0.07, MeOH). 1 H- and 13 C-NMR: Tables 1 and 2. ESI-MS (pos.): 1301 ([M + Na] $^{+}$). HR-ESI-MS (pos.): 1301.5774 ([M + Na] $^{+}$, C $_{60}$ H₉₄NaO $_{29}^{+}$; calc. 1301.5773).

Acid Hydrolysis and GC Analysis. Compounds 1 and 2 (3 mg) were hydrolyzed with 2N aq. CF₃COOH (5 ml) for 3 h at 95°. After extraction with CH₂Cl₂ (3 × 5 ml), the aq. layer was repeatedly evaporated to dryness until neutral by addition of MeOH, and then analyzed by TLC (SiO₂; CHCl₃/MeOH/H₂O 8:5:1), followed by comparison with authentic samples. Further, the residue of sugars was dissolved in anh. pyridine (100 μ l), and L-cysteine methyl ester hydrochloride (0.06 mol l⁻¹) was added. The mixture was stirred at 60° for 1 h, then 150 μ l of hexamethyldisilazane (HMDS)/Me₃SiCl; 3:1) were

added, and the mixture was stirred at 60° for another 30 min. The precipitate was centrifuged, and the supernatant was concentrated under N_2 . The residue was partitioned between hexane and H_2O (0.1 ml each), and the hexane layer (1 μ l) was analyzed by GC [9]. The absolute configurations were determined by comparing the t_R values with those of the thiazoline derivatives prepared in a similar way from standard sugars (Sigma-Aldrich): t_R (p-galactose) 19.6 and t_R (p-glucose) 18.6 min for 1 and 2.

REFERENCES

- [1] G. Gaidi, T. Miyamoto, A. Rustaiyan, V. Laurens, M.-A. Lacaille-Dubois, J. Nat. Prod. 2000, 63, 1497.
- [2] M. Elbandy, T. Miyamoto, M.-A. Lacaille-Dubois, Helv. Chim. Acta 2007, 90, 260.
- [3] G. Gaidi, T. Miyamoto, M. Ramezani, M.-A. Lacaille-Dubois, J. Nat. Prod. 2004, 67, 1114.
- [4] D. Pertuit, S. Avunduk, A.-C. Mitaine-Offer, T. Miyamoto, C. Tanaka, T. Paululat, S. Delemasure, P. Dutartre, M.-A. Lacaille-Dubois, *Phytochemistry* 2014, 102, 182.
- [5] M. Haddad, T. Miyamoto, M. Ramezani, M.-A. Lacaille-Dubois, Helv. Chim. Acta 2004, 87, 73.
- [6] G. Timité, A.-C. Mitaine-Offer, T. Miyamoto, M. Ramezani, A. Rustaiyan, J.-F. Mirjolet, O. Duchamp, M.-A. Lacaille-Dubois, Magn. Reson. Chem. 2010, 48, 370.
- [7] S. M. Ghaffari, Biol. Bratislava 2004, 59, 53.
- [8] J.-G. Luo, L. Ma, L.-Y. Kong, Bioorg. Med. Chem. 2008, 16, 2912.
- [9] S. Hara, H. Okabe, K. Mihashi, Chem. Pharm. Bull. 1987, 35, 501.
- [10] G. Mihci-Gaidi, S. Ozbey, I. Orhan, B. Sener, T. Miyamoto, J.-F. Mirjolet, O. Duchamp, A.-C. Mitaine-Offer, M.-A. Lacaille-Dubois, *Planta Med.* 2010, 76, 818.
- [11] K. Koike, Z. Jia, T. Nikaido, Phytochemistry 1998, 47, 1343.
- [12] G. Mihci-Gaidi, D. Pertuit, T. Miyamoto, J.-F. Mirjolet, O. Duchamp, A.-C. Mitaine-Offer, M.-A. Lacaille-Dubois, *Nat. Prod. Commun.* **2010**, *5*, 1023.

Received July 29, 2014